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ABSTRACT

New methods are outlined for dealing with the vibration responses
of complex flight vehicle structures to local and to diffuse acoustic
excitation. Energy absorption at structural joints and acoustic radi-
ation resistance are shown to be important in establishing levels of
these responses. Some experimental results pertaining to energy ab-
sorption coefficients and radiation resistance are given, and proce-
dures for estimating the latter are discussed.

Feasibility studies of vibration absorbers utilizing viscoelastic
spring elements and distributed mass systems and of vibration isolators
composed of viscoclastic leaf springs are summ~arized. Only the latter
are found to possess some practical advantages over conventional sys-
tems.

The results of experiments are presented which demonstrate
that sound-to-structure coupling may be reduced significantly by the
use of beams of special design (See page 28) whose stiffness de-
creases with increasing frequency. An analytical investigation is
summarized which shows that generally damping of only the plates
of beam-plate systems may be more desirable than damping of only
the beams.

Results of exploratory studies are presented dealing with the
mechanisms responsible for the damping of aircraft structural joints,
and analytical investigations of the relation between structural joint
absorption coefficients and loss factors are summarized. Loss factor
data pertaining to two actual aircraft substructures are appended.
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INTRODUCTION

The increasing abundance of intense sources of broadband vibra-
tion associated with present and future air/space vehicles tends to
make control of struictural vibratory responses essential if struc-
tural fatigue failures and equipment malfunctions are to be kept
within reasonable limits.

The design engineer has available analytical zrothods and tech-
nological developments that permit him to design simple structures
to withstand simple (narrow-band) excitation. However no methods
appear available at present that permit him to deal similarly with
complicated structures subject to more complex excitation.

The work summarized in this report was undertaken as a step
toward providing the lacking design information. Part I of this
report outlines studies directed at identifying the parameters that
affect the responses of complicated structures most directly: Sec-
tion IA deals with systems excited at a point. Section IB with sys-
tems excited by a diffuse acoustic field. Part II deals with more
specific vibration control techniques. Suctions IhA and IIC describe
feasibility studies of viscoelastic leaf spring isolators and non-
classical vibration absorbers. Section IIB demonstrates the reduc-
tion of sound to structure coupling attainable with beams designed
to have decreasing flexural rigidity with increasing frequency.*
Results of an analytical study related to optimum placement of
damping treatments are discussed in Section lITD and results of
experiments aimed at revealing the salient features of the damping
inherent in aircraft structural joints are presented in Section lIE.
The final section TIF suimm.arizes initial analytical results per-
taining to the relation between structural loss factors and absorp-
tion coefficients. Appendix I constitutes a detailed discussion of
modal densities: Appendix II summarizes loss factors measured on
two substructures of an actual aircraft.

*These beams are the subject of patent applications being filed in the
United States and other countries by Bolt, Beranek and Newman, Inc.

Manuscript released by the authors 30 March 1962
for publication as an ASD Technical Documentary Report.
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SECTION I

PARAMETERS AFFECTING RESPONSES OF COMPLICATED STRUCTURES

If one attempts to solve in detail the various coupled equa-
tions of motion that describe the dynamic behavior of a structure
one encounters intractable mathematics for all but the simplest
structures. One may therefore wish to sacrifice detail for, tract-
ability and search for a method that will permit one to describe
in simple terms the average vibration of a complex structure, so
that the salient parameters cf the structural response may be
understood and controlled in design.

A. Point-Excited Structures; Room Acoustics Analogy

In describing the acoustics of a room one faces many of the
problems that one encounters also in determining the vibrations
of complicated elastic structures. In room acoustics one cannot
solve the wave equation in detail because of the complexities of
geometry and of the interactions between the waves and the room
boundaries. Instead, one recognizes the diffuse character of the
sound field and may then calculate some of its average character-
istics, based on some average properties of the room and its
boundaries.

Similarly, detailed solutions of the equations of motion of
structural systems get out of hand very rapidly as the complexity
of these systems increases. Therefore one is led to emulate room
acoustics, postulate a diffuse wave field in the structure to be
studied, and attempt to calculate mean properties of the vibration
from relatively rough descriptions of the structure and its boun-
daries.

The work reported in this section attempts to set down the
reasoning as applied to complex structures (composed of beam and
plate-like sub-structures), to delineate the important parameters,
and to describe some experimental results that validate the theo-
retically developed relations.

1. Basic Concepts

The energy E with which a structure of total mass M vibrates
may be expressed as

E = M v (A.1)

in terms of the mean square velocity v 2 of the structure, if it is
assumed that this energy is uniformly distributed.

ASD TDR 62-237 2



If there are mechanisms that remove energy from the structure
(as there always are in practical systems) then one must supply
energy to the structure in order to maintain a given level of vi-
bration. When the power supply is "turned off", the energy in the
structure _y be expected to decay. If this decay is assumed to
vary as e ," where t denotes time, then the power loss is
-dE/dt=6E. In the steady state the power input P must equal the
power loss, so that one may write

P = Mv22 SMv2 (A.2)ST

The reverberation time T=13 0 8/% introduced here is a quantity that
lends itself well to experimental determination; it is defined
(ref. 1) as the time required for the energy to decrease by a
factor of 10u.

At frequency f the power loss in the interior of the struc-
ture may be described (ref. 2) in terms of the structural loss
factor n, as P =27rfE. Losses at the boundaries of the struc-
ture, on the oHr hand, may be more conveniently treated in terms
of the concept of absorption coefficients. The absorption coeffi-
cient of a boundary is defined as the ratio of absorbed power to
incident power at that boundary. If a system of waves moving
along a structure encounters a boundary, some energy is absorbed,
the rest is reflected and propagated until it meets another boun-
dary, etc. The energy absorbed at one encounter with the boundary
is yE, where y denotes the absorption coefficient as defined pre-
viously. The niumber of boundary encounters per unit time may be
expressed as c /L , where c denotes the group velocity of the
waves on the BAru•Iture* (thi velocity at which energy propagates)
and L the mean free path (the mean distance travelled by the wave
trainmbetween boundary encounters). The mean power loss per unit
time at the boundaries thus is Pbdry =yEC g/L', where y denotes the
mean absorption coefficient.

If the boundary is not uniform, 7 may be obtained from

YL=Z yi Li (A.3)

where yi' is the absorption coefficient of the it piece of boun-
dary (wLich has length Li), and where L=Z L denotes the total
boundary circumference. By combining the rlations for internal
and boundary power losses one may obtain

*For a plate of flexural rigidity D and surface density L,

cgD 
2  T tR 6 2 - § A7
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P = 6E = [(2wf + YCg/1mJE (A.4)

Kosten (ref. 3) has shown that for two-dimensional systems the mean
free path bL=,rS/L, where S is the total surface area. Hence the
foregoing result may be written as

5 -u = 27ffi + c y -iL A5)
b T = +7S 2

which Is closely related to a result given by Cremer (ref. 4).
Eqs. (A.2) and (A.5) contain the salient resultA of the foregoing
discussion. Eq. (A.2) permits calculation of V4 from input power,
mass M, and reverberation time T (or decay constanr 6), and Eq.
(A.5) expresses T or 6 in terms of internal losses (described by n)
and boundary absorption coefficients y.

The assumptions underlying the foregoing derivations are:

1. Energy uniformly distributed over structure (wave field
diffuse; wavelength much smaller than mean free path).

2. Exponential decay of energy with time.

3. Group velocity (not phase velocity) and Kosten's mean
free path relation apply.

4. Boundary absorption contributions add linearly (Eq. A.3).

The general validity of these assumptions is by no means
self-evident. The results of some experiments, undertaken to
verify applicability of these assumptions, are discussed in the
following section.

2. Experimental Verification

1) The validity of Eq. (A.2) and of the underlying assumption
of uniform energy distribution was verified by measuring the input
impedance of a point-driven plate and comparing the measured values
to those predicted from relations involving Eq. (A.2) and separately
measured reverberation times. Good agreement was obtained over the
entire test frequency range.

2) Exponential decay of energy was verified for a number of
beam and plate combinations (excited by impacts) by means of a
graphic level recorder. Thin recorder essentially plots log E vs
time, so that a straight line record corresponds to exponential
decay. Virtually straight lines were obtained in all experiments
of this type.

ASD TDR 62-237 4



3) Applicability of group velocity and of Kosten's mean free
path expression was verified by means of an experiment which pro-
vided a boundary portion of unity absorption coefficient; i.e., a
means for permitting all incident energy to leave the structure
under consideration. A plate was used in these experiments as the
primary structure, a second highly damped plate attached to the
first over a portion of one of its edges served to provide a boun-
dary with unity absorption. This -known" absorption coefficient
was compared with values obtained experimentally and computed from

Cgi (A.6)

In this relatiorn, which may be obtained from Eq. (A-5), T denotes
the reverberation time obtained with yi--O (i.e., before aading ab-
sorbing structures at the ti portion of the boundary), and TI
denotes the reverberation time observed after addition of the
absorber extending over L Equation (A.6) is, in fact, useful
for the practical evaluatbon of absorption coefficients in general.

Again, good agreement between measured y, and the predicted
value of unity was observed, within the limit tions of the experi-
ment.

4) The linear additive property of absorption coefficients
indicated in Eq. (A.3) was verified by a number of experiments
involving plates with boundary absorption provided by various
lengths of damping tape and screwed-on beams, variously oriented.
The additive property was found to hold for all configurations
tested.

3. Results

a) Limits of Validity

The proposed equations should not be applied blindly to all
situations. One may readily visualize, for example, that absorb-
ing devices placed near nodal positions of a structure will have
little effect on the motions of the structure, whereas the absorb-
tion of devices located near anti-nodal positions may be greatly
enhanced.

In addition, absorbing structures that are small compared to
a flexural wavelength on the primary structure may have their
absorption decreased because they can not interact effedtively
with the wave, and/or they may have their absorption increased
somewhat due to effects analogous to acoustic diffraction (refs.
5,6).

ASD TDR 62-237 5



b) Absorption Coefficients*

i) Summary of Experimental Results

Figures I and 2 summarize the results of absorption coeffi-
cient measurements on aluminum plates of 1/16 and 1/32 Inch
thickness, respectively. The various absorbers that were used
are also shown schematically in these figures,

In analogy to room acoustics one may assign structural
absorbers to three categories:

1) High frequency absorbers, whose absorption coefficient
increases with frequency, e.g., damping tapes.

2) Mid-frequency absorbers, whose absorption peak occurs
somewhere in the mid-frequency range (say, between 300 and 8000
cpe) and is governed by a resonance phenomenon, e.g., bolted-on
beams.

3) Low frequency absorbers, whose absorption is highest at
low frequencies and decreases to very small values at high fre-
quencies, e.g., parallel beams with dissipative material on the
plate between them.

ii) Absorption Mechanisms

The previously summarized experiments were undertaken pri-
marily to demonstrate the absorption coefficient concepts. The
mechanisms that contribute to energy absorption need further
exploration, but some conclusions may be deduced from data that
are available so far. These conclusions are as follows:

Damping tapes - The dissipative action of these tapes is
fairly well understood (ref. 2), although additlonal work is
required to interpret available analyses in terms of the desired
absorption coefficients. Theory predicts that the damping action
of a tape is, as a first approximation, proportional to the ratio
of tape foil thickness to plate thickness. Absorption coefficients
measured with the same tape on plates of 1/16 and 1/32 inch thick-
ness were found tc be in the ratio 1:2 over essentially the entire
frequency range; in good agreement with the theoretical prediction.

Beams bolted to plate, with viscous interlayer. - Energy
losses here are undoubtedly due to deformation of' the interlayer
and thus are associated with relative motion between the beam and
plate. Absorption peaks may be expected at maxima of this rela-
tive motion, i.e., at resonance of the plate portions between
screws (since the beam probably deforms and moves much less than
the plate).

*Some additional details may be found in Reference 7.
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It is evident from Fig. 1 that doubling of the distance
between screws shifts the first absorption peak by a factor
of 4 in frequency, as one would predict on the basis of the
aforementioned resonances. The measured values of the first
few peak frequencies also agree surprisingly well with values
computed as if the plate portions between bolts were simply
supported at the bolts. As has been remarked, this type of
calculation assumes that the beam acts essentially like an
infinitely rigid and massive support for the plate segments.
The good agreement observed may be ascribed to the fact that
the beams used are very stiff and heavy as compared to the
plate; worse agreement should be expected for lighter or
softer beams, which may make greater contributions to the
relative motion.

Parallel beams, with dissipative material between them - For
systems of this type, shown schematically in Figs. I and 2, peak
absorption may be expected to occur at a resonance frequency deter-
mined by the masses of the beams and the spring action of the plate
between them. The dissipative mechanism here is provided by defor-
mation of the damping compound (Aquaplas). Frequencies of maximum
absorption calculated on this basis agree well with the observed
values.

One may observe that at high frequencies the glued-on
beams resulted in low absorption (Fig. 1), whereas the bolted-
on beams produced fairly high absorption (Fig. 2). This may
be due to the glued-on beams' reflecting most of the incident
bending wave energy, which thus can not be dissipated by the
damping material between the beams. On the other hand, flex-
ural waves which are much shorter than the distance between
bolts pass the bolted-on beam virtually unattenuated (ref. 8)
and can therefore dissipate much of their energy in the damping
material.

Riveted Beams - Measurements indicated in Fig. 2 were performed
on a panel made to approximate aircraft construction. This panel
is shown in Fig. 3. Absorption here was probably due to friction
between the beams and the plates. The low absorption coefficients
observed might be due to the close rivet spacing, which restricts
the relative motions of beams and plate. See also Section II-E of
this report.
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B. Structures Excited By Reverberant Acoustic Fields;
Application of Energy Concepts

Thermodynamic or energy concepts are generally useful for
arriving at some understanding of complex systems, since these
concepts do not rely on detailed analyses of the systems involved.
These concepts, properly Interpreted, might therefore be used to
advantage in analyzing the vibrations of complex structures ex-
posed to random acoustic fields.

The average energy associated with a given mode of a struc-
ture or of a reverberant room may, In analogy to gas dynamics, be
taken as a measure of the "acoustic temperature" of the Ltructure
or room in a small frequency interval enclosing the modal frequency.
One may then conceive of a reverberant room as a thermal bath in
which the structure is immersed and with which it will eventually
come to thermal equilibrium0  The equilibrium temperature of the
structure then depends on the temperature of the room and on how
good the thermal contact between the two is, This thermal analogy
has been useful in guiding the analyses presented subsequently,
but further elaboration on it will be omitted here since it is not
essential for summary and application of the results of these
studies and since it is available in detail in reference 9.

1. Basic Concepts

a) Modal Behavior

Whenever structural resonances occur in separate sharply
defined frequency regions; Loe., whenever the effective struc-
tural damping is very small (or the quality factor Q is very
high), the various structural modes may be considered as inco-
herent harmonic oscillators, That is, each mode has associated
with it its own modal velocity energy, mass, force, etc.

In complete analogy to relations developed for a single-
degree-of-freedom system subject to rand_?m excitation, one may
express the mean square modal velocity vy as

2 M R( (To)

where S (w) denotes the power spectral density of the modal force
f, CO tRe natural frequency aesociated with the mode, R the total
resistance (analogous to the usual viscous damping coef#icient),
and M the modal mass (refs. 10-12).
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For structures immersed in acoustic media it is convenient
to consider the total resistance as the sum of two terms: one
(R_ ) to account for energy radiated to the medium, and the
otfo 01 ) to account for other energy losses, such as those
due to MiWgrial hysteresis or "mechanical" damping.

From the work of Smith (ref. i0) one may show that for a
structure exposed to a reverberant acoustic field with power
spectral density of pressure S (o), the previously defined Sf
is given by

4r ca
f o 2 rad p(w) . (0.a)

P 00

Here p denotes the density of the acoustic mediuam, ca the speed
of soufd in it.

By combining Eqs. (B.1) and (B.2) one may obtain the follow-
ing cogent expression:

ea = e19R (B•3)

where

eS = M v 2  = average energy per structural
mode (B.)

R = a S (to) = average energy per acoustic

"R a mode_* (B.5)

*The total acoustic energy in a reverberant room of volume V in
a frequency interval Ao, within which the mean square pressure is
p 2 =S (co)'Aw, is given by

= P2 V/Paa0

and the number of modes in the room in this frequency interval
is (ref. 5)

Na 2 cV Aw/2ir2 a3

Hence 0R = i/NR is given in Eq. (B.5).
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Rad
S radm a factor that denotes the degree (B.6)

Rrad+Rmech of' coupling between room and
structural mode.

Thus, if the various terms that enter Eq. (B.3) are in hand one
may utilize this equation to estimate the response of structures to
reverberant excitation under the conditions where the assumptions
underlying the derivation of Eq. (B.3) are reasonably well satisfied.
The remainder of this section will therefore be concerned primarily
with evaluation of the various parameters.

b) Parameter Estimates

i) Modal Mass

The modal mass M is defined so that M v /2 gives the average
kinetic energy of the structure. The modal mass is between 1/2 and
1 times the total mass, it is nearer 1/2 of the total mass for higher
modes.

ii) Coupling Factor P

It is evident from Eq. (B.6) that for those cases where mechan-
ical damping 1mech is much smaller than radiation damping Rrad, ýl.
For most practical cases, however, Rrad<<CRDech, and

Rrad (B.7)

Rtnech

Equation (B.3) applies when an acoustic field excites the structure.
For the case where the structure excites the acoustic field one finds
from a relatively detailed examination of the interaction at eR=9Sif
with I'-u.

iii) Mechanical Resistance Rmech

As for a--imple harmonic oscillator, the average power loss for
a mode is P=RTvd and the average energy is E=M-v-Z. By equating P/E
obtained here to the same ratio computed from Eq. (A.4) and noting
that generally Rmech>>Rrad one may express the mechanical resistance
directly in terms o the previously introduced structural loss factor
n and absorption coefficient y:

lechM•[2Wfyl + t• J " (B.8)

ASD TDR 62-237 13



If boundary losses predominate over internal losses, as often is the
case, then

c
Rech z7 ýL , (B.9)

where 71 is the absorption coefficient of a portion of the boundary
of length Li and M/S&pS/2 (i.e., M/S is approximately equal to one
half the structural mass per unit surface area).

iv) Radiation Resistance Rrad

The coincidence phenomenon is known to be a major factor in
determining the radiation resistance of simple structures. At
frequencies below the coincidence frequency the length of a flex-
ural wave in a structure is greater than the acoustic wavelength in
the surrounding medium, and the coupling between the structure and
the medium is poor;Rind is small. At frequencies above coincidence
the flexural wavele s are smaller than the acoustic wavelengths,
coupling is better, and Rrad is greater.

For uniform beams or plates the coincidence frequency f. is
given by

27fc c 2= C 2 (B.1O)

where x denotes the radius of gyration of the cross-section
(K = h/-fT for plates of thickness h), c denotes the speed of
sound waves in the acoustic medium, and h the speed of longitud-
inal waves in the structural material. Stiffer structural members
thus have lower coincidence frequencies and might be expected to
exhibit higher average radiation resistances in a given wide fre-
quency band.

In a structure composed of many beams and panels (e.g., a
typical aircraft section) one may generally expect to find that
some components of the structure are below and others above coin-
cidence at a given frequency. In order to obtain a first approx-
imation to the radiation resistance of such a composite structure
one might neglect interaction effects and assume that only those
components which are above coincidence contribute significantly to
the radiation resistance. Radiation resistance estimation proce-
dures based on these assumptions are outlined below.

Since the beams in most practical beam-plate structures are
much stiffer than the plates, the beams should dominate the radia-
tion resistance of such structures at the lower frequencies. The
pancld, by virtue of their higher coincidence frequencies, may have
little effect except at the highest frequencies.

ASD TDR 62-237 14



The acoustic radiation of beam-plate systems in which the plates
are limp (i.e., soft and damped) may thus be assumed to be primarily
due to the beams acting as strip radiators, with the panels acting
essentially as baffles, but perhaps adding a little to the width of
the strip radiators - in analogy to a similar situation encountered
in studies of sound transmission through walls with studs (ref. 13).

The radiation resistance of a strip radiator of length L and
width w is (for both faces) givcn by (ref. 14)

Rstr Ww2 Lp , for w > wc (B.11)

provided that the strip width w is small compared to the acoustic
wavelength. Below coincidence (that is, for <Kw ) the radiation
resistance of a strip is much smaller than that given above.

Heckl (ref. 15) has suggested that a strip radiator attached to
a limp plates has an effective radiating width w=AWir, where N is
the wavelength of plate flexural waves. For homogeneous plateR,

NP= 2ryr i(ccjw~ (B.12)

so that for a beam attached to limp panels,

Rstrip c 4LpaxCL (B.13)

where x and cL refer to plate radius of gyration and longitudinal
wave velocity.

One may note that AP decreases with increasing frequency and
that Rstrip is independent of frequency. However, the effective
strip width associated with a practical beam probably will not be
less than the width of the beam flange in contact with the plate.
If this flange width is denoted by wo, then Wp/l=wo at a frequency
fr given by

2xcLfr (B.14)

7ro0

For f>fr the radiation resistance of the strip should obey

Rstrip LPa'W. £>fr (0. 5)

instead of Eq. (B.13).
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For a beam-plate structure in which the plates are below
coincidence the radiation resistance at frequienicy may then be
approximated by

Rrad(f) 4 PaIClr Z Lfc + 2 rfPa 1 (w2)f£fr>Cc (B.16)

where the first summation denotes the total length of beams that at
frequency f are above coincidence but below f1, and the second sum-
mation is taken over all beams for which f>fr.

On the other hand, at frequencies w"hic are above the coincidenue
frequency of the panels, one may expect the radiat-on-to be dominated
by that due to the panel. Then, if one neglects edge effects (ref. i)
and takes into account radiation from both faces, where A is the total
area of the panels (one face) that are above coincidence,

'1rad 2 APaCa ' (B.17)

It must be pointed o0 that in computing radiateA power from the
defining relation P=Rrad v one must always use that v' which refers
to the velocity of the radiating section. Since it is the panel that
radiates, its velocity must be used in the foregoing expression.
(When the panel is "limp" the velocity of that portion of it that is
radiation is essentially that of the beam. Validity of the panel
velocity under this condition has been demonstrated experimentally,
as discussed in the next section.)

A relation between panel velocity vP and beam velocity vb may be

deduced for the condition of modal independence from the assumption
that the average energy per mode is the same for all structural com-
ponents. Then the energy contributed by a component is proportional
to its modal density, and if the beams and the plate are of the same
material,

Mb vb 'C
MP __. - 1C(B.18)

where denotes the total panel mass, 'b the total beam mass, and t_
denotes the plate radius of gyration, Cb the beam radius of gyration.
(This equation assumes the grillage composed of the beams to behave
like an equivalent plate (ref. 16). The stiffest beams will influence
this behavior most, therefore their xp values should be used in this

approximate computation.) If beams and plates are of different mate-
rials, the right-hand side of Eq. (B.18) should be multiplied by
cL /c "
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It should be remembered that the foregoing procedure for estimat-
ing radiation resistance constitutes only of a first step, and as such
may be unreliable. Pertinent results of a later study (ref, 17) are
discussed under the heading of Conclusions at the end of this section
(page 22).

c) Non-Modal Behavior

i) Limit of Modal Behavior

The entire previous discussion is based on the assumption that
the structural modes do not overlap In frequency, so that their vibra-
tions are statistically independent and their energies do not interact.
Overlap occurs if the frequency bandwidth associated with a mode is of
the same order of magnitude as the average frequency separation between
modes.

As shown in Appendix I, the plate-like portions of beam-plate sys-
tems contribute many more modes than the beam-like portions, so that
the former predominate in establishing the separation between modes.
The average frequency separation At between modes of a panel of area A
and thickness h is given by

Af A hcL/AJi-, (B.19)

where cL denotes the longitudinal wave velocity in the panel material.
The same expression applies also for the higher frequencies of a beam-
plate system in which all panels are of the same thickness and material;
A then denotes the total panel area.

If one assumes for the sake of simplicity that the location of
structural modes along a frequency axis may be described by a Poisson
process (ref. 18), one may show that the probability of finding more
than one mode in a frequency interval Ab is 0.5 or greater if
Ab/Af>1l.68. One may then define a "frequency of modal overlap" f" for
a structure as that frequency for which the modal bandwidth equals
1.68 Af. Since bandwidth is related to quality factor Q or loss factor

Sas Ab=f/Q-sf, the frequency of modal overlap is given by

-• - 1.68QAf = 1.68 Af (B.20)

At frequencies above this frequency the probability of finding more
than one modal peak within bandwidth Ab of a modal response is greater
than 0.5. Thus, modal behavior of the structure may reasonably be
assumed at frequencies below f.
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1i) Estimation of Non-Modal Response

At frequencies above f a beam-plate structure may be expected to
respond to an acoustic fieli essentially like an infinite plate, and
to obey the "mass law" relation

S(w ) = 4Sp( )/ps (B .21)

where S is the power spectral density of acceleration of the structure,

PS is its mean mass per unit surface area.

2. Exerimental Results

A series of experiments was undertaken in order to obtain an in-
dication of the validity of the previously outlined theories. These
experiments were performed primarily on a simulated aircraft panel
(shown in Fig. 3) suspended in a large test room. In each case the ex-
periments were performed with the panel in its original condition and
also with some damping (several randomly oriented strips of MM damping
tape) added. All experiments were performed with narrow band noise ex-
citation.

Figure 4 summarizes results obtained from experiments consisting
of driving the panel at various points by means of a mechanical shaker
and measuring the power P,, radiated to the room as well as the ve-
locity of one point on thPanel. (A point on a rib was selected since
it was found that the transducer distorted the behavior of the panel at
higher frequency when attached to the panel itself.) The measured quan-
tities are interpreted in the figure in tPens of radiation resistance

rad according to the relation Prad=Rrad Vb. The subscript b here in-
dicates that velocity was measured on a beam, rather than on a panel,
as previously indicated.

The results of reverberation time measurements on the panel of
Fig. 3 are summarized in Fig. 5, interpreted in terms of total resist-
ance RT=Rmech+Rrad according to 13.8M/T with the modal mass M taken as
1/2 the total mass.

The upper series of points shown in Fig. 6 represent values of the
coupling factor pi' computed according to Eq. (B.6) from the data of
Figs. 4 and 5. These points pertain to the case where tfh panel is
driven mechanically and excites acoustic oscillations in the test room.
The lower series of points shown in Fig. 6 represents values of the
coupling factor ý± obtained from additional measurements in which sound
in the room excited vibrations in the panel. The latter results were
computed on the basis of modal energies, using Eqs. (B.3) and (B.5).
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All computations for Fig. 6 were based on the assumption that vb, as
measured at point 6 shown in Fig. 3, represents the velocity of the
simulatcd aircraft panel. Theory indicates that p and p.' of Fig. 6
should be equal, and it appears that panel velocity v instead of
beam velocity vb should be used in the various computations. The ra-

diation resitnce R referred to a beam is related to that referred
to a plate R P accor&Ing'torad

R(b) v2  R(P) 2  (B.22)
m vRd rad p

Therefore the p.' data of Fig. 6 appears to be too high by a factor of
v2 and the p data appear to be too low oy the same factor. Hence

this factor may be computed by comparison of the two sets of data. The
results of such a computation are shown in Fig. 7, together with the
value estimated from Eq. (B.18) which is based on the assumption of
equipartition of energy among all structural modes.

Figure 8 shows the data of Fig. 4 corrected from rad to rad by

use of the velocity ratio plotted in Fig. 7. Also shown in Fig. 8 are
the radiation resistance values predicted by Eq. (B.16).

3. Conclusions

From the foregoing experimental results, and from addition results
obtained under NASA sponsorship (ref. 17) subsequent to completion of
the work described here, one may arrive at the following conclusions:

1. Equipartition or energy among the structural modes is reason-
able and provides a useful estimate of the beam/plate ve-
locity ratio.

2. The modal energy expressions of Eqs. (B.4) and (B.5) appear
to be valid, and the modal mass may reasonably be approxi-
mated by 1/2 the total mass.

3. Velocity and radiation resistance should be referred to the
plate, not to ribs, in calculation of coupling factor p.

4. Reciprocity holds; i.e., p' (room driving plate) = p. (plate
driving room).

5. Radiation resistance values estimated from Eq. (B.16) always
exceed the actual values, occasionally by considerable
amounts.
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The deviations of experimentally determined from theoretically
predicted results apparent in Fig. 8, and more pronounced deviations
observed in a Later study (ref. 17) performed with a larger and thicker
baffled plate with more massive beams, have shed some doubt in the gen-
eral applicability of the strip radiator concept as outlined here. A
later (so far only partially validated) theory (ref. 17) ascribes the
radiation resistance of beam-plate structures to the scattering of
plate flexural waves at beams, edges, or other discontinuities. The
presence of beams, etc., thus is still held responsible for increas-
ing the radiation resistance of the composite structure, but beam co-
incidences now assume much less importance. The newer model predicts
radiation resistance increases due to beam., coinnidences to be notice-
able only with beams that are very, light relatIve to the plate and to
occur at frequencies which may be considerably higher than the classi-
cal coincidence frequencies of the beams. However, since the strip
radiator theory proposed in the present report may be shown on the
basis of the newer theory always to result in high estimates of the
radiation resistance, the simpler strip radiator theory may still be
useful for conservative design estimates.
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SECTION II

SPECIFIC VIBRATION CONTROL TECHNIQUES

The maximum responses of structures to vibratory excitation are
affected primarily by the magnitude of the excitation, its coupling to
the structure, and by the resonant and damping characteristics of the
structure. Control of vibration must theefore be concerned with fa-
vorable adjustment of these factors.

The structural designer cannot usually hope to do much about con-
trolling the magnitudes of excitation caused by aerodynamic or acoustic
phenomena. However, when the excitation is a local one, as for example
due to a vibrating machine (that cannot be modified itself), the de-
signer may turn to vibration absorbers to reduce the excitation that
reaches the structure. Attempts at devising vibration absorbers with
improved characteristics are summarized in the first of the following
sections.

Means for reducing the coupling between sources of excitation and
structures are discussed in the next two sections. Section B outlines
experimental results that demonstrate the utility of "velocity-controlled"
beams (whose stiffness decreases with increasing frequency) in reducing
the radiation resistance of beam-plate structures. Section C summa-
rizes results of a mathematical study of viscoelastic leaf spring isola-
tors, which may possess some attractive features for reducing the cou-
pling between local sources and structures.

The final three sections deal with aspects of structural damping,
which is most important in limiting structural responses. Section D
outlines a theoretical study of the interaction of beams and plates in
beam-plate systems, in order to determine how application of damping
to one or the other of these components affects the system responses.
Section E presents the results of a primarily experimental investigation
intended as a first step toward understanding and improving the damping
of aircraft structural joints. Finally, section F summarizes the deriva-
tions of some expressions that relate the loss-factors of beam-like
structures to absorption coefficients exhibited by these structures
attached to plates.

A. Non-classical Vibration Abnorbers

It is well known that one may reduce the steady-state response of
a primary mass M to sinusoidal excitation at frequency w0 by connecting

2
M to a secondary mass m via a spring of stiffness k, so that w 0 = k/rn.

However, the secondary mass and spring can reduce (i.e., "absorb") the
vibration of the primary mass only for frequencies near o. For example,
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for driving frequencies only slightly greater than w 0 the "absorber"

results in large waplification of the response of M.

i) rEuncy-Variable Spring

If the frequency of absorption m0 =-'_7ii could be made to change
with driving frequency w so as to remain equal or nearly equal to it,
the resulting device would act like a n' ideal absorber over the entice
range over which this equality is maintained.

Continuous reduction of the secondary mass with increasing fre-
quency appears impossible to obtain practically. However, viscoelastic
springs are known to incrcase in stiffness with increasing frequency.
Detailed consideration of the absorber action of viscoelastic springs
and of representative suitable materials showed that:

1) The stiffnesses of viscoelastic materials increase at
most as the first power of frequency, whereas increase
as the square is required for continuous optimum ab-
sorption.

2) The most rapid increases of viscoelastic material stiff-
ness occur in conjunction with high damping, which de-
creases absorber effectiveness.

3) Large ratios of secondary to primary mass would be re-
quired for response reduction over a wide frequency
range. Large added masses are generally undesirable;
otherwise they could be connected rigidly to the primary
mass to reduce its response without introducing new
resonances.

These conclusions, coupled with practical considerations such as the
temperature dependence of the properties of viscoelastic materials,
tend to rule out the desirability of vibration absorbers with visco-
elastic springs.

2) Distributed Secondary System

It was thought that an absorber using a distributed mechanical
system (such as a beam) instead of a rigid secondary mass m could be
useful for controlling the vibrations of the primary mass at a number
of frequencies. Detailed analyses of this idea showed that absorption
could indeed be attained at many frequencies, but that such absorbers
also result in resonances (and severe amplification of the responses)
at frequencies very near the absorption frequencies. Such systems
would therefore require very precise absorber design and accurate pre-
diction of the exciting frequencies, and thus must be judged to be im-
practical in general.
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B. Radiation Resistance Control in Beam Design*

Beams may be designed so that their flexural rigidities de-
crease with increasing frequency. They thus have higher coincidence
frequencies than conventional beams with the same low-frequeney (static)
stiffness and should therefore result in less coupling to an acoustic
field.

Two 44" x 24" test panels of 0.032" thick aluminum were construct-
ed for this purpose. Three 24" long aluminum beams with C shaped
cross-sections (0.065" thick 1.'5" deep 1.0" flanges) were attached
tu one of the panels by means of an epoxy adhcsive parallel to the
24" panel dimensio, an'd -niformly spaced ovcr the c4)" length. Three
beams designed as indicated in Reference 19 of approximately the same
static stiffness as the aluminum channels were similarly attached to
the second panel. The coincidence frequency of the aluminum channels
was calculated to be about 200 cps that of the latter type beams
about 5 kc.

The results of measurements carried out on these two test panels
appear in Fig. 9. The latter beams were found to produce lower
values of radiation resistance R1 rad and coupling factor.,& than the

more conventional channels. The near equality of the total resist-
ances Rtot of the two panels indicates that the mechanical resistances

RWS.h of the two were nearly equal and considerably greater Lhan the
rW ective radiation resistances.

C. Viscoelastic Vibration Isolators

1. Leaf Springs

Viscoelastically damped beams may be designed according to
available methods (refs. 2 20) to satisfy a considerable range of
requirements and thus might provide superior broadband vibration
isolation characteristics. An exploratory study of viscoelastic leaf
springs was undertaken, therefore, as discussed in the following pages.

Consider a mass mounted symmetrically on two identical leaf
springs. If a harmonic force of amplitude F acts on this mass. then
"a (rigid) support to which the springs are attached will also experience
"a harmonic force, but of amplitude F . Alternatively if the support
is made to oscillate harmonically with an displacement amplitude Yo.

then the supported mass will oscillate with an amplitude Y. The trans-
missibility of a mounting system (here the leaf springs) is defined as

*The experiments described here use beams which are the subject of pat-
ent application by Bolt Beranek and Newman, Inc., and which bear
the trade-mark "Soundshear". Properties and design of these
structures are described in Reference 19.
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F = F YO (c.1)

the equivalence of the two ratios may be deduced from reciprocity
(ref. 21).

The characteristics of beam-like structures depend on their bound-
ary conditions. For the present analyses the leaf springs were as-
sumed to be ideally clamped at the support and at the mounted mass.
By solving the equation of flexural motions of elastic beams (refs. 4,
2)1) subject to the appropriate boundary conditions one finds that
(ref. 22)

Th(a) (C.2)

where

h(a) = sinh a + sin a

f(a) - cos a.sinh a + sin u.coeh a

g(cc) a a(coS a cosh a - 1)

aL = M/mL .

Here L denotes the length of one beam, m its mass per unit length, and
M the supported mass per beam (or half the supported mass). Thus, p.
denotes the ratio of supported mass to the mass of the supporting de-
vice,. The symbol k denotes the wave number, ? the wavelength associa-
ted with free flexural waves in the beam:

4
kn 2r/ T /E I (0.4)

E denotes Young's modulus of the beam material, I the centroidal moment
of inertia of the beam cross-section.

One may take damping into account by letting E take on complex
values; that is, by replacing E by E* = E + iE 2 = E1 (1 + il) where
E2 deno'tes the loss modulus, q the loss factor of the beam (refs. 2,

23). k and a also take on complex values k* and a.

The general algebraic expressions tend to become intractable, but
fortunately the mass ratios p encountered in practical situations tend
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to fall into two categories: 1) [1 << I (mass of leaf spring pre-
dominates) and 2) ti >> I (supported mass predominates). For these
extreme situations one may arrive at some relatively simple approx-
imations.

For . »> 1 and small a (low frequencies) one finds that Eqs.
C.2) and (C.3) reduce to the classical transmissibility expression
refs. 22, 24) whose behavior is sketched in the insert of Fig. 10.

For large a and large p one obtains the approximation

ý, 1 ý I sin a* + sinh *d -_ 1(C5Icos a* cosh a* 1cos

The second approximate equality applies for Ia* I not too small, - a
condition which may be verified to apply where wave effects are im-
portant. If one introduces the parameters A and 0, defined so that

IA = Ia*! 0 ar tan n , * " a' - ia" = Ae-i1  (C.6)

then one finds that transmissibility peaks (standing wave resonances)

occur where Reftos a*] = cos a' cosh a" = 0, or for

a' =r(n + -) , n = 1, 2, ' (C-7)

A
The magnitudes T of the transmissibility peaks are then given by

(A sinh a")-' = [a. sinh (a0 sin 0)]- . (C.8)

For most practical calculations one may determine the transmissibility
peaks from Eqs. (C.7) and (C.8). In addition A=a' unless the damping
is extremely high*, and practical calculations may be simplified fur-
ther.

The validity of the approximations of Eqs. (C.7) and (C.8) may
be verified from Fig. 10, in which the curves represent the results
of calculations carried out by means of a digital computer (ref. 25)
on the basis of the more exact expression Eq. (C.5) and the points
marked by crosses represent values calculated from the approximations
Eqs. (C.7) and (C.8)

For p. << 1 and a not too small one similarly may write

T i --1ýfRL**1 1 C9
Isin a* +0os a*I "(.9)

This function exhibits peaks approximately where the real part of the
denominator vanishes, or for

*For r ( 2 0 one finds 1 < a'/A 4 1.04.
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a' = 7r(n + j) n = 1,i, 2, "-- (C.lo)
A

The transmissibility peak values T may be found by substituting the
foregoing values of a' into

AT = (2 sin u' sinh a")-' [2 sinh(a 0 sin 0)]-io (C.ii)

Figure 11 shows curves calculated from thc more exact expression
Eq. (0.9) and peak value points obtained from the foregoing approx-
imations. Good agreement is again evident,

2. Axial Springs

It is instructive to compare the results obtained for leaf
springs with similar results for axial (e.g., compression) springs.
For the latter the general tranemlssability expression may be written
as (refs. 22, 26)

T = jcos D - sin -1

f3= W jnH2 (0.12)

I = M/mH

where m denotes the mass per unit length, H the equilibrium length
of the spring, K the classical spring constant, and ji' the ratio of
supported mass to total spring mass.

One may again introduce damping effects by replacing K by an
appropriate complex quantity K* K1 + iK 2 Kl(l+ii); then 1 also
takes on complex values:

"= f' - ip" = Be-iT , B = ¶ 'j , y = - arc tan
2

(0.13)

One again finds that for large mass ratio ýL' and low frequen-
cies (small p*) Eqs. (C.12) reduce to the classical transmissibility
result (ref. 22). For f3* not too small and large ji Eq. (C.12) may
be replaced by the approximate relation
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laJý' =Iin P4<-1  (C. 14)

which implies transmistilbility peaks given by

T = (B sinh 1 [B sinh (B sin Y)]-l (C15)

whe re

n'rn , n = 1, 2, .(a.i6)

Similarly, for small mass ratio x',

T =tes f* , (C.iy)
A'1
T lsinh I"I = (sinh (B sin v)]-

and peaks occur where

-r(n + i) n = 1, 2, ...18)

The validity of these approximations may be inferred from Figs.
12 and 13, in which the curves represent the results of the more
exact calculations and the points represent results obtained by means
of the foregoing approximate expressions.

3. Comparison

It may be shown that if Icaf springs and compression springs are
to have the same ratio of supported mass to support mass and the same
classical fundamental natural frequency, then the previously defined
parameters A and B must be related as

Ae =, B - 1 . (C.19)

Figures 11 and 12 are scaled to conform to Figs. 9 and 10 on this
basis, so that one may compare leaf springs and common springs
equitably by comparing these sets of figures.

On the basis of these figures, or by means of mathematical
analysis of the pertinent relations, one may conclude that compared
to compression springs of equivalent mass and damping, leaf springs

1) result in fewer transmissibility peaks for a given
frequency range; but

2) tend to result in a generally higher level of trans-
missibility between peaks and in a higher envelope of
transmissibility peaks.
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One should note, however, that the present state of the art
permits large amounts of damping to be designed into leaf springs
more readily than into compression springs, and that viscoelastic-
ally damped leaf springs may thus constitute superior broadband
vibration isolation devices.

D. Damping of Beam-Plate Systems

Since aircraft and other structures consist primarily of beams
and plates, the reduction of the vibrations of such beam-plate sys-
tems has received considerable attention. The addition of damping
structures and materials usually results in weight increases, so that
It is desirable to apply such damping treatments as conservatively as
possible and only where they will do the most good. The subsequently
outlined study was undertaken, therefore, as an attempt to define
under what conditions damping of only the beams is preferable to damp-
ing of only the plates, and vice versa.

The system studied is sketched in Fig. 14. Although this sketch
shows a rectangular plate and the subsequent discussion deals in
Cartesian coordinates, these restrictions are not necessary; the
conclusions of the study should be more generally applicable. However,
it must be assumed that the boundary conditions of the beam are the
same as those of the plate at those plate edges which coincide with
the beam ends.

1. Separable Eigenfunctions

Sinusoidal free motion of a plate at frequency w may be described
by w(x,y)eiwt, where w(x,y) denotes the deflection shape and obeys the
classical equation (refs. 21, 27).

DV 4w- w = , (.l)

where D denotes the flexural rigidity of the plate, p. its mass per
unit area. For a given set of plate boundary conditions one may find
a doubly infinite set of solutions w = Wmn(xy) that, in conjunction
with m = cmn, satisfy Eq,. (D.1) and the prescribed boundary conditions.

Forced motion of the plate may be described by the addition of a
term p(x,y) on the right-hand side of Eq. (D.1). The plate response
w(x,y) and forcing pressure distributions may be expressed in terms
of elgenfunction series*

*All double summations extend over m,n, = 1,2, . W.
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zz~) -- w mn(XY) £ p(x,y) Z I Pn n(Xy) (.2)

whosc coefficients are related as (ref. 28)

Wiin L + ) .. 2] Fn (D.3)

if damping of the plate is also taken into account by replacing the
real parameter D of Eq. (D.1) by the complex parameter D* = D(l + 1W);
6 denotes the loss factor of the plate.

A useful special case occurs if the elgenfunctions t can be
expressed as products of separate functions of the two pl]e coordi-
nates:

-*mn (X.'Y) = f M(x) gnCy) .(D..!i)

For the usual ideal boundary conditions (clamped, free, or supportnd)
the *rn are orthogonal; hence the factor functions are also ortho-
gonal, and one may write

ID m for m = m'

M(x) fm,(x) dx ={
j~~f o for m mI

Jyarn for n = n'
gny gn'~)dy=

a 0 for n / n'
where m and r are constants, and the indicated integrations are
carried out over the plate edge lengths.

2. Beam-Plate Interaction; Excitation at Beam

The force distribution Q(y) acting between the beam and the
plate may be interpreted as a pressure distribution p(x,y) =
Q(y) A(x), where A denotes the Dirac delta function. The plate
deflection due to Q(y) may then be obtained by application of the
foregoing result. In particular. the plate deflection at the beam
(at x = 0), which is also the beam deflection and is denoted here
by z(y), is found to be given by

Z ()Z (Kn-iAn (D.6)

z(y) = Zng(y) nZn T n)

n
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where (analogously to ref. 29),

f
2 (o) h/V'n A M 2+L; (D-7)

nii O7  h 2 +52 n m 2+62 (.
m m

h I - (w/wmn )2

and n is obtained from the expansion Q(y) = Z %sgn(y)
n

The beam deflection z, however, must satisfy the beam's equa-
tion of motion (refs. 21, 27)

B~4

B-d z - N2z = F(y) - Q(y) (D.8)
dy

where B* = B(l + ip) denotes the beam's (complex) flexural rigidity,
M its mass per unit length, and where F(y) denotes an externally
applied force distribution as shown in Fig. 14. If this external
force is also expanded as F(y) = P Fngn(y), one may obtain the fol-

n

lowing relation between modal force Pn and modal beam deflection Zn:

S= (l+i) - + LL K2 (D.9)n I Ký + A n

Here w denotes the beam's nth natural frequency, which may be shown
to obeQ

2 4 B 4 1 d gn (D.10)
'n nN ' n g n dy '

where Cn is a constant [as a consequence of Eq. (D.4)]

In absence of damping (P = 6 = 0), infinite amplitudes Zn result
for finite driving force Fn (i.e., resonance occurs) whenever

Re n/Zn} = 0 in Eq. (D.9). Damping of practically feasible magnitudes

ASD TDR 62-237 4l,



generally changes the resonance frequencies only slightly, so that
for all practical purposes one may still assume that the real part
of Eq. (D.9) vanishes at resonance. Then, in the presence of damp-
ing, at resonance

F n 2 LA n.i

n + n2A2
Rnes (D.n' n

Of the terms on the right-hand side of Eq. (D.l1) the first repre-
sents the damping effect of the beam, the second that of the plate.
From Eqs. (u.7) one finds that significant contributions to An occur
only for wn w . The optimum damping effect of the plate on oscil-
lations driven"mt the beam hence may be realized if one designs the
beam-plate system so that its resonances coincide with those of the
plate.* For such an optimized system cn = wmn and

Fn 2 + CL 5 (D.12)
n Res 'n 2(0

For many (rectangular) systems one may, at least in theory, design
the plate so that it has a resonance wherever the beam has a reso-
nance. For a simply supported system with a centrally located beam
one finds that cn = wmn if

n 0 (D. 13)

In order for a plate resonance to correspond to each beam resonance
the foregoing equation must be satisfied for each value of n, n =
1,2,3,"'. One thus needs merely to select some design value a for
the ratio m/n, then choose the beam and plate dimensions according
to Eq. (D.13). (If Eq. (D.13) is to hold for all n, a must be an
integer.)

*Heckl (ref. 8) obtained this conclusion by considering the plate
as an array of rods and demonstrated its validity experimentally.
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3. Excitation on Plate

In the presence of an externally applied pressure r(x,y)eicut
acting on the plate, one may write the modal loading Pmn of Eq. (D.2)
as

= Rm n ( Le (D.14)
In

where the first term denotes coefficients of r(x,y) and the second
denotes the contribution of the beam-plate interaction force Q(y) =
M %gn(y) From Eq. (D.8) with F(y) = 0 one may establish a rela-

tion between n and the modal beam deflection Zn; the latter also
obeys

zn= Wrn fm(W) (D.15)
In

in view of the definition of modal deflection Wnn of Eq. (D.2).
Combination of these results with Eq. (D.3) then permits one to
arrive at the following relation between modal pressure Rmn and
modial deflection nmn:

Rm 2 2 + .(Ii)2_(2j nfs
IWmn - + nm Z Wreom

f 2( ) - (D.16)

M rI(n)
In

Equation (D.16) represents an infinite set of simultaneous
equations. Solution is difficult since the equations are coupled,
as evident by the appearance of all W terms on the right-hand side.
Fortunately, however, one need not attempt a solution to discuss
resonant behavior of the system,

At resonance of the m,n mode the modal amplitude Wmn may be
expected to exceed all others considerably. System resonances
may be expected to occur for RefRmnWl) 0, or at frequencies
'Ann given by LI)"ný_:0 o tfeqece

2 2mn J n
'mn l+J ' (D.17)

ASD TDR 62-237 43



The resonant modal displacement then obeys

mn2 (D.18)
ltWmnR rn m

The first term represents the plate contribution, the second that of
the beam; J may be seen to describe essentialiy the coupling of the
n-mode of t9e beam to the m,n-mode of the plate.

4. Conclusions

Beam resonant responses may be reduced by damping the attached
plates. Optimum effective beam damping is obtained when the plate
resonances are made to coincide with the beam resonances. For some
configurations this matching may be accomplished for all beam reso-
nances by suitable adjustment of the beam and plate geometries.

On the other hand, beam damping has generally less effect on
the resonant responses of plates. Only a stiff, massive, and highly
damped beam can have much influence on the resonant responses of a
plate. But even such beams have little effect on those modes for
which the beam is located near a nodal line of the plate, or for
which plate flexure perpendicular to the beam predominates.

E. Damping of Aircraft Structural Joints

As discussed in the first section of this report, the damping
at Joints may be important in controlling the vibrations of a struc-
ture. Increases in the damping at Joints might be obtainable with
relatively minor structural modifications, which might thus provide
a simple and economical means for reducing vibratory response of the
structure. This section summarizes the results of an exploratory
study aimed at gaining some understanding of the mechanisms responsi-
ble for the damping in riveted and similar joints; such understanding
is clearly necessary for rational optimization of this damping.

Some suudies of similar problems have pointed toward the impor-
tance of Coulomb or dry friction damping in some structural Joints.
For example Klumpp and Goodman (ref. 30) developed analyses for
press-fit Joints, and Plan (ref. 31) investigated built-up beams.
These studies showed good agreement between experimental measurements
and theoretical predictions based on Coulomb damping- strong depen-
dences of damping on amplitude (i.e., nonlinearitiesS were found.
Somewhat different results were reported by Mead (ref. 32). In ex-
.... nl.mants n avCavfne on more naa-rl 9 i ni- nrae 1 rInt j 4nf-I q he-

.JV AJ ifý' -' V -- - F Lc l r le

observed no amplitude dependence of damping, cxccpt at relatively
high amplitudes (which are of lesser interest here, since one
desires to avoid severe vibrations in the first place).
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As Mead has pointed out, the damping of riveted joints might be

affected by many factors, including:

1. Amplitude and mode shape of the vibration.

2. Normal pressure between Joined structures and its distribution
about rivets.

3. Shear stiffness of rivet in relation to local stiffness of
joined structures. End fixity of rivets associated with rivet
head geometry, radial pressure between rivet and hole; i.e.,
assembly methods, might make significant differences.

4. Surface conditJons at the interface, including roughness, presence
of lubricants, dust, local oxidation, wear (fretting).

In order to assess the importance and trends associated with some
of these parameters, a number of damping measurements were undertaken
using essentially the experimental setup described by Kerwin (refs.
33, 34). The measurements consisted of driving a test bar sinusoidally,
removing the excitation, and observing the decay of the vibration. From
an oscilloscope display of the logaritluhr of amp3itude versus time the
linearity of the decay could be assessed directly, and the loss factor
could be obtained from the slope of the decay curve by means of a simple
calculation (ref. 3)4).

1. Experimental Results

A preliminary experiment was performed on two 1/8" thick 24ST
aluminum plates, 2" wide and 15.5" long, Joined by 8 bolts (arranged
4" apart in two parallel rows, with 1" between rows). The decay
curves were observed to be straight, i.e., damping was found to be
linear, over the entire range of amplitudes (0.02 to 50 g) of the
experiment. Similar linearity was also observed in virtually all of
the subsequently reported experiments, but in most of these no attempt
was made to obtain a wide range of amplitudes.

A series of damping measurements were carried out on test pieces
cut from the interior of the forward structure of an F-105 aircraft.
These test samples, whose cross-sections are sketched in Fig. 15, con-
sisted of 27 inch long beams with sections of skin attached by rivets
or spot welds. Test results for these samples appear in Fig. 15, to-
gether with results pertaining to the riveted sample piece after the
rivets had been drilled out and replaced by bolts and nuts. From
these results it appears plausible that ithe different Joining methods
considered result in essentially The same damping if the geometries
of the joints are roughly similar. Since Fig. 15 pertains to methods
that produce tight Joints, i.e., that produce good connections in the
vicinity of the connectors, the foregoing statement might be extended
to include any tight Joint. It thus appears that the damping of such
tight joints is not due to the connectors themselves, but perhaps due
to relative motion at the interface at some distance from the connec-
tors.
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In view of Fig. 15, one may also expecL to be able to obtain
results that have some meaning in relation to riveted joints from
experiments conducted on bolted joints, which are much easier to
adjust to desired conditions. Figure 16 marshals additional data
in support of the similarity of the damping characteristics of
riveted and bolted joints. (No torque wrench was available for
the small, 4-40, screws that were used. The "tight" condition
corresponds to the tightest that could be obtained by hand with
a screwdriver; the "loose" was obtained by backing the screws off
one quarter turn from the tight condition.)

Effects of rivet spacing may be seen in Fig. 17, which sum-
marizes the damping results obtained for the aforementioned riveted
aircraft joint sample before and after drilling out some of the
rivets. Again, since damping is certainly not proportional to the
number of rivets, it cannot be due to the rivets per se or to small
areas surrounding the rivets. It may be more reasonable to asso-
ciate damping with relative motion at interface areas located out-
side of "clamped" areas near connectors. From the near correspon-
dence of the curve for 38 to that for 18 rivets one might estimate
that in the original sample the clamped areas associated with ad-
jacent rivets probably overlapped.

That damping can not be associated merely with the structure
in the immediate neighborhood of the connectors is also evident
from Fig. 18. The curves of this figure pertain to the spot-welded
sample structure, with different widths of the skin portions (cor-
responding to the 3" dimension of Fig. 15). Since the identical
connections are involved in all the cases shown here; they hence
cannot be responsible for the changes observed, and one is once
again led to ascribe the damping to those portions of the struc-
ture which are not near the spot welds.

Figures 19 and 20 illustrate the effects of interface lubri-
cation. The addition of lubricant was found to result in increased
damping, with less viscous lubricants producing higher damping.*
Comparison of these two figures also indicates that reduction of
interface pressure (loosening of the screws) results in increased
damping for all of the interface conditions tested. Pressure reduc-
tion and improved lubrication thus produce similar results, probably

*It should be noted that some lubricant was found in the joint as
cut from the aircraft; the corresponding damping curve is labeled
"original condition". Chemical degreasing resulted in reduced

coating (curve labeled cleaned to metal) lowered the damping even
more.
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since both serve to reduce interface friction. Reduced friction
results in increased relative motion, which evidently more than
compensates for the effect of the reduced friction as far as energy
dissipation is concerned. (Note that the cyclic energy dissipated
in a classical lInear dashpot is proportional to the square of the
amplitude, but only to the first power of the viscous damping co-
efficient.)

Figure 21 shows the results that some simple modifications had
on the damping of the riveted F-105 sample structure. With the toe
of the original equilateral L-shaped cross-section bent down a
general increase in damping was observed, which may at least in part
be attributed to the extremely good. contact fostered by such a cross-
section at the heel and toe of the L. However, a further general
increase in damping was obtained (except below 630 cps) when the toe
of the L was cut off altogether. This increase might be due to im-
proved contact in the area that previously was between the heel and
toe; such improvement would be most noticeable at the higher fre-
quencies, where the motion is less restricted by the "rivets . The
peak observed at about 500 cps with the bent-down toe is probably
due to a mode shape for which a considerable amount of relative
motion occurs at the toe.

Figures 22 and 23 summarize results of experiments aimed at
evaluating the effects of beam-and-skin contact area and of beam
stiffness separately. The measurements indicatedin these figures
were performed on specially designed aluminum channel beams; those
of Fig. 22 have nearly the same flexural rigidity but differ con-
siderably in contact area, whereas those of Fig. 23 have equal con-
tact areas but different stiffnesses.

Increased contact area was found to result in increased damping
and changes in beam stiffness were found to affect damping relatively
little in general. The picture is by no means clear, however. It is
difficult to say, for example, if the higher damping noted with in-
creased contact area is due to this area increase per se or to changes
in mode shape. The high peaks shown in Fig. 23 between 500 and 800 cps
also present somewhat of an anomaly. Calculations show that this fre-
quency range corresponds to that where one half wavelength of flexural
motion of the skin is equal to the width of the skin attached to the
test beams, so that these peaks might be due to bending of the com-
posite about the rivet line (in contrast to the rest of the curve
which pro-bably is primarily associated with bending of the rivet line).

A final series of tests were performed to determine the effects of
adhesives. Th.e results of these tests, as shown In Fig. 24. indicate
that a dissipative adhesive like MMM J166 can result in a considerable
damping increase over a wide frequency range, whereas a relatively
rigid loss-less adhesive (epoxy)-not only adds little damping but even
reduces the damping of riveted joints under some circumstances.
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2. Conclusions

The studies outlined here, although by no means conclusive or
as comprehensive as one would like, permit one to arrive at least
at some tentative conclusions.

These are:

1. The damping of aircraft joints is essentially linear, except
perhaps at high amplitudes.

2. The damping of tight joints seems not to be primarily associated
wit.h the connectors or the structure in the immediate vicinity
of the connectors.

a. Different connectors (spot weld, rivets, bolts) produce
similar damping characteristics.

b. Studies on bolted joints are capable of yielding results
that have some meaning in relation to riveted joints.

3. Looser joints produce higher loss factors; reduced interface
pressure (looser or fewer rivets) or better lubrication results
in higher damping.

4. Increased beam-to-skin contact area produces increased damping.

5. Beam stiffness per se has relatively little effect on damping.

6. Rubbery dissipative adhesives introduced in the joint can
increase damping drastically, but rigid loss-less adhesives
can reduce damping.

Although the results presented here apply to a structural joint
configuration which appears to be fairly typical of current practice,
one should use extreme care in extrapolating these results to other
structures. Available data are still too limited and understanding
of the pertinent phenomena is still to incomplete to permit one to
draw valid conclusions about the damping of joints of structures in
general.

It should also be noted that the various high peaks observed in
the presented damping curves are probably associated with modal shapes
that favor high energy dissipation in some manner. Since such shapes
are probably altered or suppressed if the joint is part of a more
complicated structure, such peaks are most likely not observed in such
structures. in judging the damping errectiveness of a joint which is
to be incorporated in a more complicated structure from damping
measurements performed on the joint by itself one should therefore
probably ignore the peaks and concentrate on the overall level of
damping.
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F. Relation of Plate Absorption Coefficients
to Loss Factors of BoundaryStructures

A considerable amount of information is available concerning
the loss factors of beam-like structures, whereas very little is
known about absorption coefficients associated with such structures.
This section therefore is concerned with some preliminary analytical
steps toward obtaining interrelations between these two quantities.

1. General Expressions

From the first section of this report it is evident that the
absorption coefficient 7 of a portion of a plate boundary may be
defined by

y = <Pdiss>/<Pinc> , (F.1)

where Pi denotes the (length-wise) average power flow per unit
length Ffeasured along the crest of a plate wave incident on the
boundary. Pdiss denotes the (length-wise) average power dissipated
at the boundary, again referred to unit length measured along the
incident wave crest. The brackets < > indicate averages taken over
the angle of incidence e, so that y denotes the fraction of the
incident power that is dissipated.

If the wave field on the plate is reverberant (i.e., independent
of e) then (ref. 4)

<PX> = P X D kA (F.2)

where X denotes the displacement amplitude of the plate flexural
wave, k the wave number, w the circular frequency, and D the
flexural rigidity of the plate.

The loss factor n of a structure is defined by (ref. 2)

_ =o (F.3)

where U denotes the total energy dissipated by the structure
per cycle and U. the "energy of vibration" of the structure. (For
lightly damped structures Uo is essentially equal to the time-wise
maximum of the total strain energy). In general n for a given
structure depends on amplitude, mode shape, and frequency. No
essential difficulty results if the eaergy terms of Eq. (F.3) are
interpreted as length-wise average vaIues rather than totals; hence
such averages will be assumed henceforth. Tf n is now assumed to
be independent of length-wise position in the structure, then
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Pdiss " Udiss m/27 - U0io, (F.4)

and from Eq. (F.l)

<nUo>A2 c D (F.5)

2. Boundary Structures with Loss Factors
Independent of Deflection Shape

For beam-like structures whose loss factors do not depend on
the shapes into which they are deformed during a vibration (e.g.,
homogeneous viscoelastic bars or elastic bars with free visco-
elastic layers), the energy losses obtained when such structures
are attached to plates will be independent of the angle of inci-
dence of plate waves, and <nUo> = rj<Uo>.

The average strain energy in a beam of flexural stiffness El
(where one might consider an 'effective beam" as including a por-
tion of the plate) may be found to be given by (ref. 4)

<Uo> =-El-<4 (kp sin S)4> (F.6)

if the beam is assumed to deflect sinusoidally (in space) with the
proper spatial periodicity to conform to the incident plate waves
(refs. 4, 35). From Eq. (F.3) one may then obtain

y = i(EI kpi4D).R ; R w <(XB/Xp)2 sin4 9> . (F.7)

The parameter R depends on the effect of the beam on the
plate motion. When the added beam is so light and soft as to have
no appreciable effect on this motion, then XB=Xp and R=3/B. In
general, however, more detailed analyses are required. Some
results directly applicable to such analyses are available (ref.
35), but the multitude of parameters complicate the analysis to
such an extent that it must be considered beyond the scope of the
present study.

3. Boundary Structures Attached with Viscoelastic Adhesive

In the case where structural beam is joined to a plate by a
thin layer of viscoelastic glue, virtually all of the energy dis-
sipation occurs in the viscoelastic material. One may then utilize
the d~n~tnon of the material's shear loss factor to write

Udiss = 2r P Us , (F.8)
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where U9 denotes the time-wise maximum of the (length-wise average)
strain energy stored in the viscoelastic layer. From Eqs. (F.1 - 4)
and the foregoing one may then obtain the alternate expression

y = P<US>/XP D Q (F.9)

From an analysis similar to Kerwin's (ref. 33) one may show
that for a laminate consisting of a thin viscoelastic layer between
two elastic structures (i.e., a beam and plate) where these are much
stiffer (in extension) than the viscoelastic layer,

5 ~bG (S XB ic,)2 Fsin3 & 12
y + sin2e

if one also assumes that the wave in the laminate is sinusoLdal in
space and has its wavelength determined by plate waves striking the
beam with angle of incidence 0. The newly introduced symbols have
the following meanings:*

H14 kP (B K?)

b = width

H thickness of viscoelastic
layer

a = real part of complex shear modulu l

S = distance from neutral axis of plate to
that of added beam

B= EBAB = extensional stiffness of unit
length of added beam

"= Epbph = extensional stiffness of unit
"length of strip of plate affected by beam

B,Ep = Young's modulus of beam, plate, material

,= beam cross-sectional area

h = plate thickness

b = effective width of plate strip

*The parameter y is closely related to the generalized shear parameter
of Seution III of Ref. 2.
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4. Damping Tapes

If XY_ is independent of the angle of incidence 0, then one may
readily agerage Us of Ea. (F.1O) over 0. Introduction of this result
into Eq. (F.9) then permits one to arrive at

,y rI *#(y) (F. 12a)

where
S2 kp

I I

Y_ 4y + (54)3/] (F.12b)

Damping tapes represent the simplest boundary structures for
which these relations apply. They are studied here not only because
of their possible practical importance, but also because such a
study might provide an indication of the validity of the foregoing
analysis.

Figure 25 shows absorption coefficients y measured with 2-inch
wide strips of damping tape applied to an irregularly shaped aluminum
plate as well as curves obtained from calculations based on Eqs.
(F.125. It is evident that theory and experiment agree quite well as
long as the tape width is less than the half wavelength of a plate
flexural wave, i.e., for ),<4 inches. The derivation of Eqs. (F.12)
assumes that all damping is due to the length-wise deformation of the
viscoelastic layer. This assumption is no longer adequate for higher
frequencies where the tape width may extend over several plate wave-
lengths. At these frequencies one would expect to obtain additional
energy dissipation due Lo width-wise shear deformations of the visco-
elastic layer, and Eqs. (F.12) underestimate the absorption coeffl-.. nt. ThIs '& altu evident in tne figure.

The experimental work summarized in Fig. 25 was done by methods
discussed in Section I and reference 34. Commercial (Scotch Brand)
damping tapes were used, The thicknesses of the adhesive layers of
these tapes are a nominal 5 mills; 428B tape has 8 mil aluminum foil
backIng, 428C has a similar 12 mil thick backing. The adhesive prop-
erties used in the calculations were those published in reference 33.
For t.h.. cal.culation. p was assumed, since the tape is much lighter
and softer than the plate and may be supposed to affect the plate
motion only slightly.
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SECTION III

SUP24ARY AND DISCUSSION

It has been shown that the responses of complex structures
are strongly influenced by energy absorption at joints between
substructures (measured in terms of absorption coefficients) and
by the amount of coupling between an exciting sound field and
the structure (described in terms of radiation resistance), in
addition to the more conventional mass stiffness and damping
parameters of vibration analysis.

Absorption coefficients were measured for a few structural
joints, primarily to validate some of the theoretical work. De-
tailed studies of absorptive otructurea and of some of the energy
dissipation mechanisms associated with them remain to be under-
taken, particularly with a view toward developing configurations
and design data leading to improved absorption performance.

The damping due to riveted and similar joints, which now
appears to be much more significant than had previously been sup-
posed, should merit considerable further investigation. Some of
the features of joint damping brought to light by the exploratory
study reported here should be explored further; their exploitation
seems likely to lead to damping increases secured at little expense
and weight penalty.

An introductory analytical study attempted to establish some
relations between loss factors of boundary structures and the ab-
sorption coefficients realized when these structures are attached
to plates. Since much loss factor data are available, whereas
relatively little is known about absorption coefficients, continu-
ation of these studies may lead to results of considerable utility.

Reductions in radiation resistance result in reduced vibra-
tions of structures exposed to acoustic fields, hence control of
these resistances constitutes an important means of vibration con-
trol. The first steps toward providing an understanding of the
mechanisms responsible for radiation resistance were described in
this report; extensions of these steps are being studied (ref. 17),
and undoubtedly much additional investigation will be required
before generally useful prediction and design procedures applicable
to complex structures are developed. The ability of special beams
(designed per Reference 19) to reduce radiation resistance has been
demonstrated, however only by means of a laboratory experiment.

, further tuduie are ..... u to utermine if use of su ch

structures is warranted and feasible in practice.
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Detailed analytical studies of vibration absorbers utilizing
viscoelastic spring elements showed these absorbers to be rela-
tively impractical. The same conclusion was reached concerning
the utility of' sbsnrbers using distributed systems.

Viscoelastic leaf springs were found to hold some promise
as vibration isolation systems required to perform well over very
wide frequency ranges. Their main advantages over more conventional
springs lie in that they exhibit fewer transmissibility peaks and
that they can be designed with frequency-variable damping. The
latter is important in reducing the magnitude of the transmissibility
peaks without increasing significantly the transmissibility at low
frequoncles, Additional study Is needed to reduce these concepts
to practical hard-ware.

A study of the modal behavior of beam-plate systems showed
that when such systems are excited at a beam the plates adjacent
to the beam may contribute significantly to reduction of the reso-
nant beam responses. High effective beam damping is obtained when
the plates are highly damped and when they ar'i designed so that
they have resonances whenever the beam has resonances.

On the other hand, beam-plate systems excited by distributed
loading on the panels tend to derive only minor resonant response
reduction from damping of the beams. This is so because the beams
tend to couple poorly to the plates. (Plates have many more reso-
nances than beams, hence one can not match beam resonances to each
of the panel resonances.) In general, therefore, one may hope to
obtain good control of beam-plate system resonant responses, no
matter how the system is driven, by damping only the plates and
designing these so that the resonances coincide with beam reso-
nances.
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APPENDIX I

MODAL DENSITIES

A. Plates

The natural frequencies %n of simply supported rectangular
plates are given by

(/Dmný 2 =mh I• YI1

where m n are positive integers, a, b are the edge lengths, and
c = c K cL is the wave velocity.*

If (m/a) and (n/b) were continuous variables, Eq. (I.1) would
represent a circle of radius (c/ic) in the plane of these variables,
as shown in Fig. 26. However, the natural frequencies correspond
only to integral values of m and n, hence to the "lattice points"
indicated in the figure. The number of natural frequencies that
fall below a specified value of w thus corresponds to the number
of lattice points that fall within the quarter circle of radius
CU/7c.

Actual counting of these points Vsually is impractical. It is
more convenient to assign an area($)($) = [) to each lattice point

(as shown in Fig. 26) and to determine how many of these lattice
point areas make up the area of the quarter circle. Of course, one
must make due allowance for the strips along the coordinate axes
that are not associated with lattice points. One thus finds that
for a simply supported plate the number of modes whose frequencies
imn are less than o3 are given by

mN ) )Z P +(1.2)

where P = 2(a+b) denotes the plate perimeter. The modal density,
obtained by differentiation of (1.2) with respect to w, is

n (c) ý1 A P (1.3)ns() =• KL 2V" (t.3)

*x is the radius of gyration of the cross-section equal to h/-I2,
where h represents the plate thickness. cL is the longitu-
dinal wave velocity in the plate material. i
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For other than simply supported boundaries the mode arrange-.
ment is not quite so easily computed, but approximations are
possible. Noting that the natural frequencies of a clamped-clamped

an n 1
bar of length b are approximately given by -r b- + - n=l, 2, ... ,

one may visualize the lattice corresponding to a plate clamped at

y=O,b to be shifted upward by an amount I with respect to the
lattice of Fig. 26. Similarly, clamping at x=O,a would shift the

lattice to the right by an amount --. If one now accounts for the

areas within the quarter circle that are not associated with lattice
points, one may obtali the number of modes, as before. For a fully
clamped plate one finds

N(UmncD) W-F - 2P + l

<~w) 7 c2
mn (ý 7r](1.4)

Plates with free edges may be treated similiarly. Since the
natural frequencies of a bar with free-free ends are exactly the
same as those of the same bar with clamped-clamped ends, the lattice
for a free plate should be the same as that for a fully clamped one.
However, a free plate may also deform In only one coordinate direc-
tion at a time, i.e., like a bar, so that additional lattice points
occur where the lattice lines intersect the coordinate axes. For a
free plate, then,

N(n - [A + 4 r'

J A(.5)
ns (w) A •CC

Note that at high frequencies one obtains the same modal
density for all boundary conditions, namely

n A (1.6)
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This corresponds to a frequency separation between modes of

Am 1 hcL

B. -R ain-Plate Systems

Consider an agglomeration of panels, 'frames, and t-r.ngers,
as is common to aircraft construction. If the frames and stringers
were infinitely rigid they would remain motionless, and the modal
density would simply be the sum of the modal densities for all of
the panels. Actual zt-inforcing structures possess some flexibility,
so that adjacent panels may be expected to interact and the modes
of the total structure will be complicated combinations of motions
of all the sub-structures, but one may hope to obtain a rough es-
timate of the modal densities of such complicated structures by
assuming that each panel adds its modes independently. The panels
(which may be assumed clamped at all frames and stringers) thus
contribute the following number of modes below the frequency w;

Vp Vp

N() 'A2 A i D P+(1.8)

where v 1 denotes the number of the panels. For panels of the same
material and of uniform thickness, Eq. (1.8) may also be written as

whence

nP(0) = A B (1.10)4wceL 2rVarvI&

where B is the total beam (or rivet-line) length. Note that each
beam is counted twice as perimeter length, once for each panel it
bounds, making PnP-B.

[If one wishes to refine the estimate one must consider Inter-
action of the various structural components. Among others, one may
wish to add the modes due to motion of the gross structure. The
motion of a multiply beam-reinforced plate at the lower freqaencies
is essentially that of an orthotropic plate (ref. 16), whose stiff-
ness is generally due primarily to the beams. If this equivalent
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plate is considered unsupported, one may invoke Eq. (1.5) but use a
new equivalent phase velocity ce. If this orthotropic plate has an
area equal to the total structure area A, then it contributes a num-
ber of modes given by

N e() cu2 A

below cu.

The number of modes below e in the beam-plate system will be
given by

r 1  c

N S 2 A IU2 + - + ,p . (1.12)

However, usually c >>c, since the reinforcing beams in practical
structures generally are considerably stiffer than the panels.
Thus, inclusion of the equivaleent plate modes gcnraily modifies
Eq. (1.9) only slightly, and generally adds little to the quality
of the estimate.]

The frequency at which the first mode occurs may be estimated
by setting N(o) = 1 in Eq. (1.8). Solution of the resulting quad-
ratic equation results in a somewhat cumbersome expression, however.
One may instead wish to consider when one obtains one mode per panel
on the average, i.e., when N = V. The corresponding frequency f0
of the "onset of modes" then is ýbtaned from Eq. (1.8) simply as

4D2hcL
0 H 3• A

For the simulated aircraft panel of Fig. 3 Eq. (1.10) results
in a modal density value (at high frequencies) of 0.272 modec/cps,
whereas experimentally a value of 0.28 was determined. Equation
(1.13) predicts onset of modes (i.e., the occurrence of N=V =15
modes) at 170 cps for the aircraft panel, but experimentallg one
finds N=15 at 100 cps - a discrepancy that may to some extent be
due to experimental difficulties, but most likely is due primarily
to failure of the various assumptions to hold for the lower modes
and frequencies.
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APPENDIX II

MEASURED LOSS FACTORS OF AIRCRAr'T SUBSTRUCTURES

The loss factors of some pieces of a F-105 forward structure
were measured during the course of some of the previously reported
studies. These results are presented here in Figures 27, and 28.
Inclusion of these data was deemed desirable here because such In-
formation seems to be lacking in the literature and because it
might have some bearing on the course of future damping investiga-
tions.

The data reported here were obtained by decay rate measure-
ments, again using essentially the techniques and instruments
discussed in reference 34.

The substructures to which these data pertain included no
specific damping provisions. They were complicated structures,
however, made up of many panels with numerous reinforcing stringers
a.nd bulkheads, and a multitude of rivets, spotwelds, and (relatively
rigid) inscrts of various sorts. The structures were painted for
the most part.

Rough measurement of surface area and total rivet line length
showed that on the basis of the relation near the top of p. 4 a
mean free path length Lm of 6 inches or less would apply for flex-
ural waves on the surface panels of these structures. For these
1 / 1 6 " thick aluminum panels a 6" wavelength corresponds to about
60o cps, so that the absorption coefficient concept might reason-
ably be applied to thLese structures for somewhat higher frequencies.
Unfortunately, detailed pertinent rivet line absorption coefficient
data was lacking, so that further validation of the concept could
not be accomplished. This validation must be deferred to a later
study.
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